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ABSTRACT
The ability to note down small pieces of information,
quickly and easily, can be useful. This paper proposes a
system called PhonePoint Pen that uses the in-built ac-
celerometer in mobile phones to recognize human hand-
writing. By holding the phone like a pen, an user should
be able to write short messages or draw simple diagrams in
the air. The acceleration due to hand gestures can be trans-
lated into geometric strokes, and recognized as characters.
The geometric images and/or characters can then be sent
to the user’s email address for future reference. We imple-
mented the PhonePoint Pen on the Nokia N95 platform,
and evaluated it through real users. Results show that en-
glish characters can be identified with a median accuracy of
83%, if the users conform to a few constraints. Our ongoing
and future work is focused on iteratively eliminating these
constraints, with the prospect of developing a new input
technology for personal devices.

1. INTRODUCTION
Imagine the following scenario. While driving to of-
fice, Leslie stops at a traffic light. As she mentally sifts
through her tasks for the day, she remembers that she
needs to call her friend, Jane, very soon. Since Leslie
tends to forget her personal commitments, she decides
to make a note of this task. Therefore, while keep-
ing her gaze on the traffic lights, she reaches for her
phone from the pocket, and by holding it like a pen,
she writes “JANE” in the air. She also gestures a check-
mark to email the written note to herself. She does not
look at any of these hand-gestures she makes. Once in
her office, she finds an email in her mailbox that reads
“PhonePoint Pen – JANE”. Leslie calls Jane, talks to her,
and deletes the email. The figure below shows the out-
put of writing Jane using PhonePoint Pen.

The above is a fictional scenario, however, represen-

tative of a niche in pervasive computing applications.
In particular, we believe that there is a class of appli-
cations that will benefit from a technology that can
quickly and effortlessly “note down” short pieces of in-
formation. Although existing technologies have made
important advances to meet the needs, the quality of
user-experience can perhaps be improved. We discuss
some avenues of improvement, and motivate the po-
tential of PhonePoint Pens.

Typing an SMS, while popular among the youth, has
been unpopular among a moderate section of society.
Studies report user dissatisfaction with mobile phone
typing [1, 2, 3]. The major sources of discomfort arise
from small key sizes, short inter-key spacings, and the
need for multi-tapping in some phone keyboards. With
increasingly smaller phones, keyboard sizes may de-
crease, exacerbating the problem of physical typing.

Even if future keyboards [4] improve the typing expe-
rience, some problems may still persist. While walking,
or with one hand occupied, typing in information may
be inconvenient. Using the mobile phone accelerome-
ter to capture hand gestures, and carefully laying them
out in text or image, can improve the user experience.
The ability to write without having to look at the phone
keypad may offer an added advantage.

One may argue that voice recorder applications on mo-
bile phones may be an easy way to input short pieces
of information. However, searching and editing voice-
recorded content is difficult (unless processed through
a separate speech-to-text software). Further, browsing
through multiple voice messages is time-consuming.
Writing in air, and converting them to typed text, may
alleviate these problems.

Current approaches are largely ad hoc. People use
whatever is quickly reachable, including pen-and-
paper, sticky notes, one’s own palm, etc. None of these
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scale because they are not always handy, and more im-
portantly, not always connected to the Internet. Thus,
hurriedly noted information gets scattered, making in-
formation organization and retrieval hard.

This paper proposes to use the in-built accelerometer in
modern mobile phones as a quick and ubiquitous way
of capturing (short) written information. The problem
definition bears similarity to known problems in gesture
recognition. However, as we will see later, recognizing
actual alphabets in air (using the phone processor, a
noisy accelerometer, and no software training), raises
a number of new challenges. For instance, as a part
of writing the alphabet “A” on paper, one must write
“/\” first, lift and reposition the pen on the paper, and
then write the “—”. When writing in air, the phone
cannot easily say which part of the hand-movement
is intended to be the “re-positioning” of the pen. The
problem is further complicated by the inherent noise
in mobile phone accelerometers, the user’s involuntary
wrist-rotation, and practical difficulties in deriving dis-
placement from noisy acceleration. The PhonePoint
Pen addresses majority of these challenges by treat-
ing the accelerometer readings as a digital signal, and
successively refining it through simple numerical and
signal processing algorithms. The simplicity is impor-
tant to ensure that the operations can be performed on
the phone processor. Once individual geometric move-
ments have been tracked, their sequence of occurrence
is matched against a decision tree (a simple grammar).
The outcome of the matching operation yields the en-
glish character.

The PhonePoint Pen is not yet like a true pen-in-the-air,
and requires the user to get used to a few soft con-
straints. Users that do not rotate their wrists while
moving, do not write too fast, and write 15-inch sized
capital letters, achieve an average accuracy of 83%.
with english alphabets. The geometric representation
of the characters (shown as 2D images) are quite legi-
ble, except in 23% cases. The performance degrades as
these constraints get violated, such as with new users.
However, after writing around 20 characters, most
users observed greater than 70% accuracy. Surveys and
verbal feedback from random student users, as well
as from speech-impaired patients in Duke Hospital,
were positive. The absence of visual feedback while
writing did not appear to be a concern at all. While
more research is certainly necessary, our current find-
ings give us confidence that the PhonePoint Pen could
become a publicly-usable technology in the near future.

The conception of the ideas and a preliminary design
of the PhonePoint Pen (P3) was published in MobiHeld
2009 [5], a workshop collocated with ACM Sigcomm.

Besides a mature design, full implementation, and a
real-user based evaluation of the system, this paper
adds a number of functional capabilities:

1. The workshop version was only capable of geo-
metric representations of characters; this paper al-
lows for actual character recognition leading to
(editable/searchable) text.

2. The workshop version focused on identifying a
single character, while this paper attempts to rec-
ognize transitions from one character to another,
forming words.

3. The workshop version used a back-end server for
processing; this paper is capable of on-phone anal-
ysis, and can display the results on the phone’s
screen with 2-3 seconds latency.

4. Finally, this paper adds a few miscellaneous fea-
tures such as character deletion, spaces between
characters, digit recognition, and the ability to
email with a gesture (a check-mark in the air).

The overall system is implemented on the platform of
Nokia N95 phones using Python as the programming
platform. The PhonePoint Pen demo video, and other
related information, is available at:

http://synrg.ee.duke.edu/media.htm

The rest of the paper is organized as follows. Section
2 discusses the potential use-cases for the PhonePoint
Pen. The core design challenges are discussed in Sec-
tion 3, followed by the system design and algorithms in
Section 4. The implementation and evaluation is pre-
sented in Section 5. Section 6 discusses some of the
remaining research challenges, and the related work is
visited in Section 7. Finally, the paper closes with a
summary in Section 8.

2. USE CASES
We present some use-cases for the PhonePoint Pen (P3).
These are not necessarily to express the utility of cur-
rent system; instead they are a vision of the future.
However, where applicable, we show examples from
our current system.

Assistive Communications for Impaired Patients: The
Speech Pathology and Surgery division of Duke Medical
School expressed keen interest in using the PhonePoint
Pen as an assistive technology for impaired patients.
Several patients suffer from inherent speech impair-
ments, or experience similar conditions after surgeries.
War veterans may have lost fingers, while others may
lack finger-dexterity for typing on keypads. Yet, these
patients are often capable of broad hand gestures, such
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as in sign-languages. PhonePoint Pen can prove to
be of assistance to such patients. It may permit a
small degree of impromptu communication between
a speech/hearing-impaired patient and someone who
does not understand sign-languages. We have per-
formed 15-minute experiments with 5 real patients at
the Duke Hospital, and discussed the applicability of
the system with surgeons, care-givers, and healthcare
advisors. As discussed later, the PhonePoint Pen was
met with high enthusiasm.

One-handed Use: People often have one of their hands
occupied, perhaps because they are carrying a suitcase,
a baby, or holding onto the rails in a moving train. P3
allows one-handed actions, approximating the experi-
ence of a pen/pencil. Besides, users can write words
without looking at their hands. Even if the characters
overlap in space, P3 can identify them individually and
lay them out as regular text. The word below is written
in air without looking at the hand movement.

Equations and Sketching: One of the students who vol-
unteered to test the system suggested the possibility of
quickly writing equations in the air. Equations are diffi-
cult to write with regular phone keyboards, and P3 may
be convenient. Other use-cases involve sketching sim-
ple diagrams. While explaining an idea over the phone,
a person could quickly draw a simple figure and send it
to her caller. On similar lines, one may sketch driving
directions, or draw out a desired food item (e.g., fish)
in a foreign country’s restaurant. At present, P3 is un-
able to draw figures with high reliability – the following
fish and equation were drawn in 2 attempts each.

Mashing with Cameras: While attending a seminar,
imagine the ability to take a picture of a particular
slide, and write out a quick note in the air. The phone
can superimpose the text on the slide, and email it to
the user. Photos in a party or picnic, may similarly be
captioned immediately after they are taken.

Emergency Operations and First Responders: The De-
partment of Homeland Security (DoHS) has expressed
interest in PhonePoint Pen as a quick input method that
does not require the user’s visual focus. Emergency sce-
narios are often unsuitable for typing, or even talking
on the phone, because the observer may be engaged in
looking at the events around her. The ability to observe
and gesture at the same time is anticipated to have

value in these situations.

While the above use-cases are specific to phone-based
applications, the basic idea of writing-in-air can be gen-
eralized to other devices and applications (e.g., a TV
remote control could allow users to write “17” in the
air to switch to channel 17). With this range of appli-
cations in mind, we visit the design of the PhonePoint
Pen, next.

3. CORE CHALLENGES
Existing devices, such as the Wii remote [6], have the
ability to identify hand gestures with reasonably good
accuracy. However, most of these devices are more re-
sourceful in terms of hardware and battery, and several
offer visual cues to their users (perhaps through a mon-
itor or a TV). Commodity mobile phones are embed-
ded with low-cost sensors and constrained by limited
battery power. This magnifies the inherent problems in
air-writing. We begin with a discussion of these core re-
search challenges, and our approaches alongside each
of them. Thereafter, we assemble these blocks into a
functional prototype.

(1) Filtering Hand Rotation without Gyroscope
Issue: Nokia N95 phones are equipped with a 3-axis
accelerometer that detects acceleration in the X, Y, and
Z directions. Figure 2(b) shows an example of raw
accelerometer readings on each of the 3 axes. The
accelerometers measure linear movement along each
axis, but cannot detect rotation. Hence, if the human
grip rotates while writing, the reference frame of accel-
eration gets affected. Existing devices like “Wii Motion
Plus” and Airmouse employ a gyroscope to discriminate
rotation [7, 8]. In the absence of gyroscopes in phones,
preventing the rotational motion is a problem.

Proposed Approach: We begin with a brief functional
explanation of the gyroscope. Consider the position
of a gyroscope-enabled phone (GEP) at time t = t0 in
2D space (shown in the left side of Figure 1). At this
initial position, the figure shows that the GEP’s axes
are aligned with the earth’s reference axes (i.e., gravity
is exactly in the negative Y direction). The accelerom-
eter reading at this position is < Ix(t0), Iy(t0) − g >,
where Ix(t0) and Iy(t0) are the instantaneous accel-
eration along the x and y axis at time t0 respectively,
and g is the gravity. Now, the phone may rotate at
the same physical position at time t1 also shown in
Figure 1 (right). The phone now makes an angle θ
with the earth’s reference frame, and the accelerometer
readings are < Ix(t1) − gsin(θ), Iy(t1) − gcos(θ) >.
However, it is possible that the phone moved along
the XY plane in a manner that induced the same ac-
celeration as caused by the rotation. This leads to
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Figure 1: Earth’s gravity projected on the XY axes;
the axes are a function of the phone’s orientation.

an ambiguity that gyroscopes and accelerometers can
together resolve (using angular velocity detection in
gyroscopes). However, based on the accelerometer
readings alone, linear movements and rotation cannot
be easily discriminated.

We have two plans to address this issue. (i) The sim-
pler one is to pretend that one of the corners of the
phone is the pen tip, and to hold it in a non-rotating
grip (shown in Figure 2(a)). Some users also found it
easier to hold it like a white-board eraser – this grip also
reduced wrist-rotation. (ii) Alternatively, while writ-
ing an alphabet, users may briefly pause between two
“strokes”. The pause is often natural because the user
changes the direction of movement (from one stroke
to another). For example, while writing an “A”, the
pause after the “/” and before starting the “\” can be ex-
ploited. An accelerometer reading at this paused time-
point can identify the components of gravity on each
axes, and hence, the angular orientation θ can be de-
termined. Knowing θ, the phone’s subsequent move-
ment can be derived. To be safe, the user may be ex-
plicitly requested to pause briefly between two strokes.
Of course, we assume that the phone rotates only in
between strokes and not within any given stroke (i.e.,
while writing each of “/”, “\”, or “–”). When writing
too quickly, or for certain movement-impaired patients,
this assumption gets violated, resulting in distortions in
the geometric domain.

(2) Coping with Background Vibration (Noise)
Issue: Accelerometers are sensitive to small vibrations.
Figure 2(b) reports acceleration readings as the user
draws a rectangle using 4 strokes (around 350 units
on the Z-axis is due to earth’s gravity). A significant
amount of jitter is caused by natural hand vibrations.
Furthermore, the accelerometer itself has measurement
errors. It is necessary to suppress this background vi-
bration (noise), in order to extract jitter-free pen ges-
tures.

Proposed Approach: To cope with vibrational noise,
we apply two noise-reduction steps. First, we smooth
the accelerometer readings by applying a moving av-
erage over the last n readings (in our current proto-
type, n=7). The results are presented in figure 2(c).
Next, we mark as noise all acceleration values less than
0.5m/s2. We chose this threshold based on the average
vibration caused when the phone was held stationary.
All acceleration values marked as noise are set to 0. Fig-
ure 3(a) shows the combined effect of smoothing and
vibration filtering.

(3) Computing Displacement of Phone
Issue: The phone’s displacement translates to the
size of the air-written character, as well as their rel-
ative positions (such as in equations, figures, etc.).
The displacement δ is essentially computed as δ =∫ ( ∫

a dt
)
dt, where a is the instantaneous accelera-

tion. In other words, the algorithm first computes the
velocity (the integration of acceleration), followed by
the displacement (the integration of velocity). Noise
in the acceleration readings will reflect on the velocity
computation, and will get magnified in the computa-
tion of displacement. For instance, an erroneous short
positive impulse in the accelerometer (i.e., accelera-
tion becoming positive and then returning to zero),
results in a positive velocity. Unless a negative impulse
compensates for the positive impulse, the phone would
continue to be in a state of constant velocity. When this
velocity is integrated, the displacement error will be
large.

Proposed Approach: In order to reduce the velocity-
drift errors, we look at consecutive accelerometer read-
ings marked as noise in the previous step. We reset the
velocity to zero, if n (=7) consecutive readings have
been filtered out as vibrational noise. This is because a
continuous sequence of noise vibration alone is a good
indicator of a pause, or a statically held phone; hence,
it is an opportunity to suppress residual error. Figure
3(b) shows the effect of resetting the velocity. Even if
small velocity drifts are still present, they have a tolera-
ble impact on the displacement of the phone. As seen in
figure 3(c) the amount of displacement and the shape
drawn are represented reasonably well. The direction
of movement is inferred from the signs of the accelera-
tion along the X, Y, and Z axes.

(4) Differentiating an “A" from a Triangle
Issue: The imaginary slate in the air has no global
reference frame for position. While writing character
“A”, assume the writer has already drawn the “/” and
“\”, and now lifts the pen to draw the “–”. Observe
that the phone has no idea about the global position of
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Figure 2: (a) Pretending the phone’s corner to be the pen-tip reduces rotation. (b) Raw accelerometer data
while drawing a rectangle (note gravity on the Z axis). (c) Moving average computation.
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Figure 3: (a)Final processed acceleration readings (b)Computing velocity as an intermediate step towards
measuring displacement. (c) The approximate rectangle as the final output.

“/\”. Hence, upon drawing the “–”, the pen does not
know whether it is meant to be added in the center (to
indicate an “A”), or at the bottom (to indicate a triangle,
∆). This ambiguity underlies several other characters
and shapes.

Proposed Approach: This is a difficult problem, and
we plan to jointly exploit the accelerations along the X,
Y, and Z axes. Consider the intent to write an “A”. Also
assume that the user has just finished writing “/\”. The
pen is now at the bottom of the “\”. The user will now
lift the pen and move it towards the up-left direction, so
that it can write the “–”. The lifting of the pen happens
in 3D space, and generates an identifiable impulse on
the Z axis. When the acceleration in Z axis is above a
certain threshold, we label that stroke as a “lifting of
the pen”. This pen-lifting can be used as a trigger for
the user going off the record. User movements in the
XY plane are still monitored for pen repositioning, but
do not get included in the final output. When the phone
is in position to write “–”, a small pause can be used as
an indication for going back on the record.

(5) Identifying Character Transitions
Even if pen-lifts are recognized, certain ambiguities
remain. For instance, “B” and “13” may have the ex-

act same hand-movement, including the pen-lift. The
user’s intention is difficult to recognize, making charac-
ter distinction hard.

Proposed Approach: We rely on a combination of mul-
tiple heuristics to mark character separations. The sim-
plest approach is to require the user to include a spe-
cial gesture between characters, like a “dot” or a rel-
atively longer pause. Thus, “13” should be written as
“|”, “.”, “⊃”, “⊃”, while the “B” should be “|”, “⊃”, “⊃”.
While this may be inconvenient, the phone pen also
employs additional methods of delimiting characters.
These methods rely on understanding what the user has
written till now, and what the next “stroke” is likely to
be. We will discuss this in detail in the next section,
after we have discussed stroke-detection and a simple
stroke-grammar to identify characters.

4. SYSTEM DESIGN AND ALGORITHMS
The above building blocks provide for a geometric rep-
resentation of air-written characters. While the geo-
metric version can be displayed or emailed as an im-
age, conversion to text is likely to be more useful (for
browsing and searching). This section develops the al-
gorithmic components towards this goal.
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4.1 Stroke Detection
Characters can be viewed as a sequence of strokes. The
alphabet “A”, for instance, is composed of 3 strokes,
namely “/”, “\”, and “—”. If the discrete strokes can be
pulled out from the seemingly continuous movement of
the hand, it would be possible to infer the characters.
To this end, we have analyzed the english alphabets and
characterized the basic set of strokes, as in Figure 4.

Figure 4: Basic strokes for English characters.

To identify the strokes, P3 computes a running variance
of the accelerometer readings. When this variance falls
below a threshold, P3 marks those regions as a pause
of the hand. The pauses demarcate the human-strokes,
allowing P3 to operate on each of them individually.
For stroke-detection, our basic idea is to correlate the
human-strokes against each of the basic strokes. This
form of correlation is not new, and has been used as
standard primitives in classification and matching tech-
niques [9, 10, 11]. The correlation is performed over
a varying window size of accelerometer readings. This
is because the hand often rotates towards the end of
the stroke, and the samples corresponding to the ro-
tations should ideally be pruned out. In such cases, a
shorter window size offers better correlation, in turn
yielding the exact size of the human-stroke. Besides,
even when the pauses are short between strokes, vary-
ing the window-size identifies the stroke boundaries.
The intuition is that two consecutive strokes are typi-
cally different in the English alphabet, and thereby, cor-
relating across the boundaries of the strokes reduces
the correlation value. Performance results, reported
later, show reasonable reliability in stroke detection.
The natural question, then, pertains to combining the
strokes into a character.

4.2 Character Recognition
The PhonePoint Pen observes the logical juxtaposition
of strokes to deduce the character that the human is
trying to write. For this, we adopt a stroke grammar for
english alphabets and digits. Figure 5 shows a pruned
down version of this grammar for visual clarity. The
grammar is essentially a tree, and expresses the valid
sequence of strokes to form an alphabet. Moreover,
the grammar also helps in stroke-recognition because it
provides P3 with an ability to anticipate the next stroke.
For instance, observing strokes “| \ /” in succession, P3
can anticipate an “M” and expect the next stroke to be a

“|”. Thus, by correlating “|” to the stream of accelerom-
eter readings (and ensuring a high correlation), the
system can better identify the end-points of the next
stroke. This helps in identifying the residual samples,
which in turn helps in tracking the re-positioning of the
hand in-between strokes. The benefits are cascading.

In certain cases, the user’s hand movement may be
falsely classified as an incorrect stroke. A frequent ex-
ample is “\” and “⊃”. Because the user’s hand has a
natural rotational motion (pivoted at the elbow), mov-
ing diagonally for a “\” results in an arc, which then
gets classified as “⊃”. Thus “N” cannot be classified
correctly. To account for such possibilities, we have up-
dated the grammar tree. For example, if stroke 6 (“|”)
is followed by stroke 2 (“⊃”), we call it a “D” or “P”;
however, if this is again followed by a stroke 6 (“|”),
we infer an “N”. We observe that similar opportunities
are numerous in the stroke grammar, adding to the ro-
bustness of the system. We do not include this updated
grammar in the paper and only show a small example
in Figure 6.

Interestingly, the stroke grammar presents a number of
ambiguities. For instance, “O” and “S” are composed
of the same strokes, namely, “⊂” and “⊃”. P3 resolves
this by simply observing the direction of movement in
the second stroke. If the hand is moving upwards, com-
puted from the sign of the Y-axis acceleration, the al-
phabet is declared as an “O”, and the vice versa. “X”
and “V” can also be solved similarly. Another ambigu-
ity is between “D” and “P”. In this case, P3 computes
the range of Y-axis movements and compares them. If
the ranges are comparable (second stroke being greater
than 0.75 of the first), the alphabet is deemed as a “D”,
else a “P”. Finally, some kind of ambiguities are rela-
tively harder. For instance, “X” and “Y” have the same
strokes, and only differ in how the user repositions her
pen. Since hand-repositioning does not have any preset
movement, they are more prone to error. Thus, even
though the “\” in “Y” is smaller than that of “X”, P3 of-
ten makes a mistake. We intend to further improve on
the hand re-positioning algorithms in future (through
some learning), and better resolve these issues. For this
paper, we assume that the human user will be able to
identify what was the intent (like a typo), or a spell
checker would perform the right substitution.

4.3 Word Recognition
Recognizing the juxtaposition of characters, to recog-
nize a word, adds to the ambiguity. For instance, “B”
and “13” are identical in terms of the strokes used, and
so are “H” and “IT”. Unless we find a signature to de-
marcate characters, the PhonePoint Pen will yield false
positives. Towards this goal, we consider a combination
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Figure 5: Developing the stroke set, and creating the grammar for character recognition.

Figure 6: Incorporating tolerance into the grammar
tree, translating it into a graph. Alphabet “N” can be
reached via multiple paths. The ambiguity between
H and U remains.

of multiple heuristics. None of these heuristics are indi-
vidually reliable, but may be reasonable when used in
conjunction. First, we make the observation that while
transitioning from one alphabet to the next, users have
a naturally longer pause (especially with upper case
alphabets). Second, we observe that in some cases, if
the hand moves in a leftward horizontal direction, it
may be a hint about the start of a new character. This
happens, for example, when a user has written across
the imaginary plane in front of her, and moves back
in space (towards left) to write more. Typically, since
none of the strokes (except “G”) has a horizontal stroke
from right to left, such a movement, when observed, can
be a segregator of characters. Third, we ask the users
to gesture a “dot” between characters whenever they

can remember. Thus, “13” should be written as “|. ⊃⊃”,
while the “B” should be “| ⊃⊃”. Drawing such a dot
presents a unique signature to delimit characters, but
of course, slows down the user while writing. Thus,
the user can only use it if she remembers or wishes to.
If the delimiter is not used, the accuracy of character
recognition may decrease.

We note that not all cases are like “B” and “13”. Even
without the delimiter, some characters will present a
natural separation by an application of the stroke gram-
mar. In other words, given a sequence of strokes, the
pen anticipates the next stroke to be from a specific set
of strokes. If the next stroke is not in this anticipated
set, then it implies the start of a new character. For
example, given “|” and “—”, the phone can anticipate
a “—” assuming that the user is trying to write an “F”
or an “E”. However, if the next stroke is “/”, then the
phone immediately infers that the prior alphabet was
an intended “T”. Even if the delimiter is not present,
such character transitions can be recognized to form
words. Of course, we acknowledge that all the above
approaches are heuristics. Nevertheless, they are very
simple and amenable to on-phone processing. Also,
when used in conjunction, we find a reasonable rate
of false positives.

4.4 Control Gestures
To write a short phrase, the words need to be separated
by spaces. In certain cases, the characters may need to
be deleted. Further, the user should be able to email
the written/drawn content to her email address. These
are a few control operations that are vital to improve
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the user’s experience. The PhonePoint Pen assigns a
unique gesture to each of these, and recognizes them
without difficulty. Specifically, the space is denoted by a
long horizontal movement or two dots. The deletion is
like using an eraser – the users shakes her hand at least
four times briskly. To email, the user must draw a check
mark in the air. With these functionalities in place, we
present the implementation details of the PhonePoint
Pen, followed by performance evaluation.

5. IMPLEMENTATION AND EVALUATION
We prototyped the PhonePoint Pen on a Nokia N95
mobile phone, equipped with a software accessible
3-axes accelerometer. The phone accelerometer was
programmed to obtain 30-35 instantaneous acceler-
ation readings per second. We developed a server
side implementation first on MATLAB. Basic MATLAB
libraries allowed us to implement some signal process-
ing techniques (filtering) and simple statistical analysis.
We ported this code on Python for on-phone process-
ing. Some of the techniques were simplified (filtering
operations were modified to running averages and sub-
tractions). The results from Python and MATLAB are
different in rare occasions.

The remainder of this section is organized in three
parts: (1) evaluation methodology, (2) PhonePoint Pen
evaluation with Duke students, and (3) user-study and
experiences from patients with cognitive/motor impair-
ments conducted at Duke University Hospital.

5.1 Evaluation Methodology
The P3 evaluation is centered around character and
word recognition accuracies. We define accuracy as the
fraction of successful recognitions, when a user writes
individual alphabets/characters or words1. Alongside
P3’s character recognition accuracy, we also capture
P3’s quality of geometric representation. For this, we
display the geometric characters to a human, and ask
her to recognize them. We call the correctly iden-
tified fraction, Human Character Recognition (HCR)
accuracy. The HCR accuracy somewhat evaluates the
quality of P3’s geometric output.

To compute word-recognition accuracy, we randomly
generated words from a dictionary and requested test
users to write them. Our main observation was that
long words are more prone to errors because users
have a higher chance to miss pauses between charac-
ter strokes or forget to mark the character end. As
we see later, word-recognition accuracy will degrade
with word length. Nevertheless, since PhonePoint Pen
outputs typed-text we can apply automatic dictionary
1We use the words “alphabet” and “character” interchange-
ably”.

correction and improve the final accuracy. For words,
we will report the accuracy of P3, Dictionary-Assisted
P3, and P3-with-HCR.

We conducted PhonePoint Pen tests mainly with Duke
University students from computer science, and engi-
neering. The test group comprised of 10 students in
three categories: expert, trained, and novice. The ex-
pert set comprised of 2 users who extensively pilot-
studied with P3 (wrote around 75 characters) before
beginning the tests. Four users from the trained set
wrote 26+ characters (each English alphabet approx-
imately once), and four users from the novice set prac-
ticed less than 10 characters. We also performed a user
study with a small population of 5 patients from the
Duke Hospital – the primary purpose was to gain in-
sights into P3’s applications into assistive technology.
According to our IRB approval, the patients were al-
lowed to record up to 8 characters. The patients had no
previous experience with our prototype, and performed
the experiments under the supervision of care-givers.
Although P3 broadly failed in the tests, we will report
the valuable experience and feedback we gained from
neurosurgeons, physicians, and speech pathologists.

5.2 Performance Evaluation
We present the evaluation results from the Duke Uni-
versity student group. We start by showing a few writ-
ten samples (both geometric and text), followed by a
metric-based evaluation.

Air-Written Samples
Figure 7 shows the geometric version of alphabets M,
O, B, I, S, Y and S, written by a trained user (each
alphabet written separately). The acceleration read-
ings for M and Y are presented alongside. P3 correctly
converts the accelerations to alphabets, while the ge-
ometric versions are human legible (at least when the
same person writes and reads the text). Figure 8 shows
some examples of air-written words – these small words
were written in one attempt. Evidently, the lack of a
reference frame degrades the sense of proportion and
relative placement of characters.

Even though characters are quite distorted, the stroke
grammar proved tolerant to the distortions, and yielded
correct results for all the words in Figure 8. However,
mistakes occurred in several other cases, especially
when the user wrote too quickly, or forgot to mark the
character transitions with a longer pause or a “dot” in
the air. The mistakes were naturally pronounced with
longer words. For instance, the words PEACE, GAME,
and MINUS were decoded as PEMCE (no pen-lift for
the A resulting in an M), GAMF (P3 was unable to
detect the quick “ ’ for E) and MWUS (the lack of the
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Figure 7: Alphabets M, O, B, I, S, Y, S, as outputs of the PhonePoint Pen. Although distorted, the characters
are legible. Crossing the Y requires a pen lift and repositioning in the absence of a reference frame.

Figure 8: Words written in air: ACM, LOL, WIN, GO, and ALICE.

“dot” after I made I and N coalesce into a W). We will
visit this aspect again in the next subsection.

Systematic Evaluation
Towards an upper bound on P3’s performance, we
asked 2 expert users to draw each English alphabet
10 times. Human users were also asked to recognize
each of the 260 alphabets. Figure 9 shows the P3 and
HCR accuracies. The performances are comparable,
except in some cases (D, G, Q, and Y), where P3’s
character recognition was better that its geometric rep-
resentation. Averaging over all alphabets, P3 achieved
a 90.15% accuracy while HCR attained 77%.

To test the system with inexperienced users, we re-
quested the trained and the novice groups to write all
26 alphabets. We requested only one trial, so that users
do not gain experience over time. In total we tested 4
trained and 4 novice users. Figure 11 shows the aver-
age accuracy per user. In general, the trained writers
performed better than the novice users, achieving an
accuracy of 83.6% and 60.5% respectively. However,
two of the novices performed well, matching and even
surpassing the accuracy of a trained user. One of the
novice users found it hard to write, and was able to
achieve only 40% accuracy. His performance did not
improve even with reasonable training.

To understand the problem, we requested the two
weakest novice users to write with P3 on a surface
(a table-top). The results improved appreciably (Figure
11), offering reason to believe that the users had dif-
ficulty staying on the (imaginary) vertical plane while
writing in air. If one assumes that flat surfaces may
often be accessible, P3 may still be useful to such users.
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Figure 11: Avg. accuracy per (novice/trained) users.

Figure 10 shows the per-alphabet accuracy for trained
and novice users. Some characters (like C, M and O)
were decoded correctly for all the users. On the other
hand, alphabets that require pen lifting (A, E, F, H, K,
T, X and Y) proved to be consistently better for trained
users. This is a result of more hands-on experience
with the P3; trained users realized that lifting the pen
needs to be performed explicitly, as opposed to moving
the phone on the same plane. Character X seemed the
most demanding for the novice users. For some, the
alphabet was often mistaken for Y, while for the rest
“going off the record” was unsuccessful. Alphabet H
also registered a similar problem.

We wanted to understand the usability of the system
with respect to alphabet sizes. Therefore, we asked
users to choose the smallest size alphabet at which they
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Figure 10: Per-character average accuracy for trained and novice users.

can air-write comfortably. Most users expressed ease
while writing up to roughly 10-inch sized characters
(the earlier experiments were with approximately 15-
inched alphabets). Figure 12 shows the recognition
accuracy. Results show comparable accuracy for most
of the users. Interestingly, one of the novice users (N3
in Figure 11) experienced a sharp accuracy improve-
ment at these relatively smaller sizes. Through more
tests, we realized that smaller strokes may result in
less velocity drift, in turn curbing the accelerometer
based errors. The phone also stays in the same vertical
plane, often improving the user experience and ease of
writing. Since accuracy degraded with less than 6-inch
letter, we believe that 10-inch sizes can be currently
supported with P3. As we discuss later, this may not
be sufficient, especially for the medical applications we
have in mind.

Recall that stroke-grammar exhibits inherent ambiguity.
For example, D and P are written with the same strokes
“|” and “⊃”. Similarly, characters {V, X, Y} and {O, S}
use common sets of strokes. We disambiguate between
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Figure 12: Accuracy with 10-inch characters.

these characters by computing the phone displacement
during the off-the-record movement, as well as the di-
rection of the strokes. Figure 13 presents the percent-
age of trials that were disambiguated correctly together
with the percentage of incorrect outcomes. This graph
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is computed over all the ambiguous characters recorded
during our test trials. Results show that our reposi-
tioning system is reasonably robust. Mistakes consist
mostly of characters being decoded incorrectly and not
as a result of ambiguity. Ambiguous alphabets were de-
coded incorrectly in less than 12% of the test cases for
characters D, P and S. Alphabet X showed a higher am-
biguity with Y (around 33% false positives). This is
mainly due to the lack of a reference frame to draw “\”
and “/” of similar length.
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To understand the speed of air-writing, Figure 14 shows
a CDF of the writing-duration for expert, trained, and
novice users. On average, correctly decoded characters
were written in around 4.5 seconds. P3 certainly re-
quires users to write slow, so that adequate number of
accelerometer samples can be collected for capturing
the strokes. With improved support for accelerometers,
this problem may get alleviated.
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Figure 14: Recognition accuracy as a function of the
time to write the character.

We asked expert users to also write full words in air.
The words ranged from 2 to 5 characters and were
chosen randomly from a dictionary. The users wrote

Table 1: Word recognition.
Word Length PhonePoint Pen Spell Check Human
2 9/10 9/10 5/10
3 9/10 10/10 5/10
4 6/10 9/10 5/10
5 7/10 7/10 9/10

10 words for each length. Table 1 reports the P3’s
recognition accuracy. Dictionary assistance improves
the accuracy in some cases, while randomly selected
humans were able to read the words with 40% error.

Energy Measurements
We ran experiments to compute the energy footprint
of the Nokia N95 accelerometer. We sampled the ac-
celerometer at the same rate as PhonePoint Pen on a
fully charged Nokia N95 8GB phone. The phone exhib-
ited an average battery-lifetime of 40 hours. We con-
clude that P3’s impact on battery lifetime is marginal,
especially in light of its occasional usage pattern.

Informal User Feedback
We performed informal survey and usability tests with
more than 40 Duke University students, and 5 fac-
ulty. In addition, the early prototypes of PhonePoint
Pen featured in Slashdot and EnGadget and received
more than 100 comments. A video-demo on Youtube
received more than 97,800 views. From the real user
surveys, and from the online forums, we received valu-
able feedback. In general, people found P3 exciting;
one user commented that “even though I may not use
it frequently, I would like to have this as an iPhone
App”. Some users were critical, and commented that
they may look “silly” while writing in the air. The
large character-size was received with hesitation in the
YouTube demo; however, currently we are able to write
smaller. A few users raised concerns about privacy,
while others responded by saying that when observing
a user air-writing, “decoding the alphabets backwards is
difficult”. Many users liked the prospect of using the
phone as the TV remote, and writing channel-numbers
in the air. Finally, one online comment was enthusiastic
about being able to sign in air, perhaps when a FedEx
package gets delivered to the door.

5.3 Experience with Duke Hospital patients
In collaboration with Physicians from the Surgery/Speech
Pathology department of Duke Health Center, we car-
ried out PhonePoint Pen tests with live patients suffer-
ing from various forms of cognitive disorders and motor
impairments. Based on IRB approval, five patients were
requested to write 8 randomly chosen alphabets. The
patients were selected with varying degree of motor-
impairments (e.g., a hydrocephaleus lumber drain trial
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patient exhibited good cognition but weak motor skills;
a patient from a car accident had a right side paralysis
and spinal injury, but was able to write with his right
hand; a 72-year old stroke patient had weakness on
both limbs with sever tremors). The tests were car-
rier under the supervision of medical practitioners and
care-givers, who first learnt to use P3 from us. We
were not allowed to observe the patients, however,
we interacted closely with the care-givers to receive
feedback. Importantly, P3 generated interest in the
hospital, drawing neurosurgeons, speech therapists,
and care-givers to witness the tests and comment on
the potential applications and additional requirements.
The overall experience proved to be invaluable. We
report the main lessons from it, here.

(1) The P3 design requires users to press a button be-
fore writing, and to re-press the button at the end. This
proved to be a bad design choice – patients found writ-
ing very intuitive, but were unable to press the button.
One patient pressed the buttons many times, another
pressed the wrong one, and yet another found it hard
to press. The unanimous feedback was to “replace the
button with gestures” that will mark the start and end
of air-writing.

(2) A neurosurgeon criticized that the P3 prototype
required “shoulder, elbow, and wrist coordination”, a
constraint that can hardly be satisfied with such classes
of patients. His recommendation was to reduce the
size of the letter so that it can be written with elbow
movements alone. Moreover he suggested developing
filters that would cancel the tremor in people’s hands,
and thereby recognize the characters.

(3) One particular advantage of P3, even in light of spe-
cialized medical gadgets, is familiarity with cell phones.
Physicians and care-givers emphasized the difficulties
patients face in adopting new technological gadgets,
particularly at the higher age group. Using the patient’s
own phone to communicate “made a lot of sense”. They
said, with a good degree of reliability, they envision a
wide range of applications. Interestingly, care-givers
showed enthusiasm event to the prospect of the patient
changing her TV channel by writing in the air.

Table 2: Patient performance.
Patient ID 1 2 3 4 5
Accuracy 1/8 1/8 1/8 5/8 could not

press button

6. LIMITATIONS
In its current form, the PhonePoint Pen is not ready for
wide-scale use. Several limitations need to be resolved
to bring the system to the standards of a product. This

section discusses the key limitations, and some ideas to
resolve them in future.

Drawing and Writing Long Words still Primitive
The sketching capabilities are primitive with our cur-
rent system. The primary problem stems from the
inability to track the phone movement while the pen is
being repositioned on the imaginary plane. Thus, al-
though the actual written words/shapes are identified,
their relative placements are often incorrect. The prob-
lem is greater as the figure involves multiple pen-lifts.
Long words and sentences also have the problem. Our
ongoing work is exploring the possibility of using the
camera to determine hand-movements. By correlating
the camera view over time, the hand motion may be
better characterized. This may even help in detecting
hand-rotation.

Writing while Moving
If a person writes in the air while moving, the ac-
celerometer readings will reflect that movement. The
prototype described in this paper does not attempt to
filter out these background movements. We believe
that some of these movements, such as walking or jog-
ging, exhibit a rhythmic pattern that can be removed.
However, others are less recognizable. A person may
rotate her body while writing, or a car may bounce
while passing through a pothole – the induced noise
may be difficult to eliminate. We plan to address this
problem in our future work.

Cursive Handwriting
The current prototype supports uppercase alphabets
only. Lower case alphabets may be possible to support
with a different set of strokes and a modified stroke-
tree. However, supporting cursive writing is signifi-
cantly more difficult. The problems of stroke-detection
and character-recognition are exacerbated due to the
continuous movement of the hand. One approach
would be to apply pattern recognition algorithms on
the entire window of (noise-suppressed) accelerometer
readings. However, such a scheme will not only require
complex computation, but may also need a reasonable
degree of training. We have traded off these function-
alities for simplicity.

Smaller Alphabets and Quicker Writing
With the current prototype, alphabets need to be
around 10 inches in size. Moreover, users may need to
write them somewhat slowly (no quicker than 1 alpha-
bet per second) so that the accelerometer readings can
be captured, and the pauses between strokes/characters
identified. Ideally, the system should permit the user
to write small and quick. This would require more fre-
quent sampling of the accelerometer. We expect future
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phones to support such sampling rates.

Realtime Character Display
Ideally, the strokes could be displayed in real time on
the phone display. This might offer a visual feedback
to the user that could be useful while writing several
words. Perhaps this could be useful for deleting charac-
ters as well. Our current system does not support this
realtime capability. However, this may be feasible with
more powerful processors in future phones.

Comment on Survey and Testing Population
Students who have tested P3, and those that have par-
ticipated in our survey, are mostly students from the
Computer Science and Engineering departments. This
students are likely to have an understanding of ac-
celerometers, and could have adapted to P3’s behavior.
In that sense, our accuracy results could be biased; a
lay person may not necessarily achieve the reported
accuracy.

7. RELATED WORK
Gesture recognition has been widely studied in the
past [10, 12]. Majority of the work has focused on
tracking the movement of the hand, either through
specialized wearable sensors, or through vision based
techniques. For example, variants of “smart glove”
based systems [13, 14, 15] have recognized hand and
finger movements with impressive granularity. While
useful for specific applications, such as in augmented
reality, the need to wear these gloves preclude spon-
taneous use-cases. Moreover, the gloves are equipped
with a number of sensors, and the gestures are not con-
verted to alphabets. Recognizing alphabets using noisy
mobile phone accelerometers present a different set of
challenges.

Cameras have also been used to track an object’s 3D
movements in the air [6]. Microsoft Research recently
demonstrated a project, titled “write in air” [16], that
uses an apple in front of a camera to air-write alpha-
bets. Computer vision based algorithms can precisely
discern the movement of the apple (or any other object)
to create both geometric and textual representations
of the alphabets. Noisy accelerometers and limited
processing in mobile phones lack several advantages
present in computer-connected cameras. Moreover,
the system does not recognize words, avoiding the
problems of transition between characters. Signal pro-
cessing based techniques are useful, but not sufficient
[11, 17, 18]

Authors in [9] have used mobile phone accelerome-
ters to perform gesture recognition [12]. They show
the possibility to detect gestures with an impressive

99% accuracy, with as few as one training. While the
control gestures in PhonePoint Pen are inspired by this
work, we emphasize that character recognition entails
an additional set of problems. Specifically, gestures are
significantly tolerant to error – as long as the errors
repeat across all gestures, the gesture can be identi-
fied. PhonePoint Pen on the other hand, must track the
phone’s movement in all the 3 axes without any train-
ing. Moreover, issues like pen-lifts, character transition,
stroke-grammar, rotation avoidance, and character dis-
ambiguation are unique to character/digit recognition.

A popular device capable of tracking hand movement
is the Wii remote (or “Wiimote”) used by the Nintendo
Wii console [6]. The Wiimote uses a 3-axes accelerom-
eter to infer forward and backward rapid movements.
In addition, optical sensors aid in positioning, accu-
rate pointing, and rotation of the device relative to
the ground. The optical sensor is embedded on the
Wiimote and relies on a fixed reference (and a sensor
bar) centered on top of the gameplay screen. The “Wi-
imote” can be augmented with the “Wii Motion Plus”,
a pluggable device containing an integrated gyroscope.
Using this feature rotational motion is captured. These
three sensors – the accelerometer, the gyroscope, and
the optical sensor – can reproduce motions similar to
real arm-motion. The Nokia N95 consists of only a
(low-cost) accelerometer, and limited processing capa-
bilities, in comparison to the Wii. Developing the pen
on this platform entails a variety of new challenges.

The Logitech Air Mouse [8] targets people who use
computers as multimedia devices. The Air Mouse pro-
vides mouse-like functionalities but the device can be
held in air similar to a remote control. Accelerometers
and gyroscopes together allow for linear and rotational
motion of the pointer on the screen. Unlike the Air
Mouse, the proposed phone-based pen does not have a
screen on which one may see the pen movement in real
time. The absence of visual cues makes positioning of
the pen a difficult problem.

A series of applications for the Nokia N95 use the
built-in accelerometer. The NiiMe [19] project trans-
formed the N95 phone into a bluetooth PC mouse. The
PyAcceleREMOTER [20] project developed a remote
control for the Linux media player MPlayer. By tilting
the phone, the play, stop, volume, fast-forward, and
rewind functions of the player are controlled. Incli-
nometer provides car inclination values while Level
Tool allows measurement of the inclination of different
surfaces by placing the phone on that surface. Lastly
many video games for the N95 phone make use of the
accelerometer, e.g., to guide a ball through a maze.
Being able to write in the air, we believe, is a more
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challenging problem than the ones in existing systems.

Livescribe Smartpen [21] is a pen-like device capable
of tracking a person’s writing. The device requires a
special finely dotted paper to monitor movement of the
pen. The pen recognizes the alphabets and numbers,
and hence, can be downloaded to a PC. However, the
dotted paper may not be always accessible, making
ubiquitous note-taking difficult. Tablet PCs also suffer
from this problem of ubiquitous accessibility.

8. CONCLUSIONS
This paper attempts to exploit the accelerometer in mo-
bile phones to develop a new input technology. While
today’s users are mostly used to keyboards and touch-
screens, we propose to mimic a pen. By holding the
phone like a pen, the user should be able to write short
messages in the air. The phone identifies the hand ges-
tures as one of multiple strokes, compares the sequence
of strokes against a grammar, and recognizes the air-
written alphabets. The entire process requires no train-
ing, and can run entirely on the phone’s processor. The
written message is displayed on the phone-screen, and
may also be emailed to the user if she desires. We be-
lieve that in the age of microblogging and tweeting,
such input devices may be effective to note down infor-
mation on the fly. Moreover, the pen may offer an in-
tuitive user-experience, adding to the menu of current
input methods. We call this system PhonePoint Pen, and
demonstrate its feasibility through a Nokia N95 proto-
type and real user studies. The performance results are
promising, while the user feedback (from the student
community) is highly positive.
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